Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Infect Dis ; 131: 57-64, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36870470

RESUMO

BACKGROUND: Sarbecoviruses are a subgenus of Coronaviridae that mostly infect bats with known potential to infect humans (SARS-CoV and SARS-CoV-2). Populations in Southeast Asia, where these viruses are most likely to emerge, have been undersurveyed to date. METHODS: We surveyed communities engaged in extractive industries and bat guano harvesting from rural areas in Myanmar. Participants were screened for exposure to sarbecoviruses, and their interactions with wildlife were evaluated to determine the factors associated with exposure to sarbecoviruses. RESULTS: Of 693 people screened between July 2017 and February 2020, 12.1% were seropositive for sarbecoviruses. Individuals were significantly more likely to have been exposed to sarbecoviruses if their main livelihood involved working in extractive industries (logging, hunting, or harvesting of forest products; odds ratio [OR] = 2.71, P = 0.019) or had been hunting/slaughtering bats (OR = 6.09, P = 0.020). Exposure to a range of bat and pangolin sarbecoviruses was identified. CONCLUSION: Exposure to diverse sarbecoviruses among high-risk human communities provides epidemiologic and immunologic evidence that zoonotic spillover is occurring. These findings inform risk mitigation efforts needed to decrease disease transmission at the bat-human interface, as well as future surveillance efforts warranted to monitor isolated populations for viruses with pandemic potential.


Assuntos
COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Animais Selvagens , SARS-CoV-2 , COVID-19/epidemiologia , Zoonoses , Filogenia
2.
PLoS One ; 17(9): e0274490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107832

RESUMO

The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Gana , Humanos , Estações do Ano
3.
One Health Outlook ; 4(1): 6, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256013

RESUMO

BACKGROUND: In Ghana, the conversion of land to agriculture, especially across the vegetative belt has resulted in fragmented forest landscapes with increased interactions among humans, domestic animals, and wildlife. METHODS: We investigated viruses in bats and rodents, key reservoir hosts for zoonotic viral pathogens, in a small agricultural community in the vegetation belt of Ghana. We also administered questionnaires among the local community members to learn more about people's awareness and perceptions of zoonotic disease risks and the environmental factors and types of activities in which they engage that might influence pathogen transmission from wildlife. RESULTS: Our study detected the RNA from paramyxoviruses and coronaviruses in rodents and bats, including sequences from novel viruses with unknown zoonotic potential. Samples collected from Epomophorus gambianus bats were significantly more likely to be positive for coronavirus RNA during the rainy season, when higher numbers of young susceptible individuals are present in the population. Almost all community members who responded to the questionnaire reported contact with wildlife, especially bats, rodents, and non-human primates in and around their homes and in the agricultural fields. Over half of the respondents were not aware or did not perceive any zoonotic disease risks associated with close contact with animals, such as harvesting and processing animals for food. To address gaps in awareness and mitigation strategies for pathogen transmission risks, we organized community education campaigns using risk reduction and outreach tools focused around living safely with bats and rodents. CONCLUSIONS: These findings expand our knowledge of the viruses circulating in bats and rodents in Ghana and of the beliefs, perceptions, and practices that put community members at risk of zoonotic virus spillover through direct and indirect contact with bats and rodents. This study also highlights the importance of community engagement in research and interventions focused on mitigating risk and living safely with wildlife.

4.
Emerg Infect Dis ; 27(6): 1709-1713, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34013868

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is endemic in Asia, infecting many animal hosts, but CCHFV has not been reported in Myanmar. We conducted a seroepidemiologic survey of logging communities in Myanmar and found CCHFV exposure was common (9.8%) and exposure to wild animal blood and body fluids was associated with seropositivity.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Ásia , Mianmar , Estudos Soroepidemiológicos
6.
PLoS One ; 15(8): e0237129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32776964

RESUMO

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.


Assuntos
Animais Selvagens/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Coronavirus/genética , Carne/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Quirópteros/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Fezes/virologia , Abastecimento de Alimentos , Humanos , Filogenia , Reação em Cadeia da Polimerase , Porcos-Espinhos/virologia , RNA Viral/genética , Ratos , Risco , Vietnã/epidemiologia , Zoonoses/diagnóstico , Zoonoses/virologia
8.
Sci Rep ; 7(1): 5352, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706209

RESUMO

Epstein-Barr virus (EBV) infects greater than 90% of humans, is recognized as a significant comorbidity with HIV/AIDS, and is an etiologic agent for some human cancers. The critically endangered mountain gorilla population was suspected of infection with an EBV-like virus based on serology and infant histopathology similar to pulmonary reactive lymphoid hyperplasia (PRLH), a condition associated with EBV in HIV-infected children. To further examine the presence of EBV or an EBV-like virus in mountain gorillas, we conducted the first population-wide survey of oral samples for an EBV-like virus in a nonhuman great ape. We discovered that mountain gorillas are widely infected (n = 143/332) with a specific strain of lymphocryptovirus 1 (GbbLCV-1). Fifty-two percent of infant mountain gorillas were orally shedding GbbLCV-1, suggesting primary infection during this stage of life, similar to what is seen in humans in less developed countries. We then identified GbbLCV-1 in post-mortem infant lung tissues demonstrating histopathological lesions consistent with PRLH, suggesting primary infection with GbbLCV-1 is associated with PRLH in infants. Together, our findings demonstrate that mountain gorilla's infection with GbbLCV-1 could provide valuable information for human disease in a natural great ape setting and have potential conservation implications in this critically endangered species.


Assuntos
Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/virologia , Infecções por Herpesviridae/veterinária , Lymphocryptovirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , Animais , Animais Recém-Nascidos , Gorilla gorilla , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Histocitoquímica , Pulmão/patologia , Pulmão/virologia , Boca/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia , Eliminação de Partículas Virais
9.
J Wildl Dis ; 53(4): 864-868, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715292

RESUMO

Infection with Brucella spp., long known as a cause of abortion, infertility, and reproductive loss in domestic livestock, has increasingly been documented in marine mammals over the past two decades. We report molecular evidence of Brucella infection in Asian sea otters (Enhydra lutris lutris). Brucella DNA was detected in 3 of 78 (4%) rectal swab samples collected between 2004 and 2006 on Bering Island, Russia. These 78 animals had previously been documented to have a Brucella seroprevalence of 28%, markedly higher than the prevalence documented in sea otters (Enhydra lutris) in North America. All of the DNA sequences amplified were identical to one or more previously isolated Brucella spp. including strains from both terrestrial and marine hosts. Phylogenetic analysis of this sequence suggested that one animal was shedding Brucella spp. DNA with a sequence matching a Brucella abortus strain, whereas two animals yielded a sequence matching a group of strains including isolates classified as Brucella pinnipedialis and Brucella melitensis. Our results highlight the diversity of Brucella spp. within a single sea otter population.


Assuntos
Brucella/isolamento & purificação , Brucelose/veterinária , Lontras/microbiologia , Animais , Teorema de Bayes , Brucella/classificação , Brucella/genética , Brucelose/epidemiologia , Brucelose/microbiologia , DNA Bacteriano/isolamento & purificação , Feminino , Ilhas/epidemiologia , Masculino , Cadeias de Markov , Método de Monte Carlo , Filogenia , Reação em Cadeia da Polimerase/veterinária , Reto/microbiologia , Federação Russa/epidemiologia , Estudos Soroepidemiológicos
10.
Prev Vet Med ; 137(Pt B): 112-118, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034593

RESUMO

As the world continues to react and respond inefficiently to emerging infectious diseases, such as Middle Eastern Respiratory Syndrome and the Ebola and Zika viruses, a growing transdisciplinary community has called for a more proactive and holistic approach to prevention and preparedness - One Health. Such an approach presents important opportunities to reduce the impact of disease emergence events and also to mitigate future emergence through improved cross-sectoral coordination. In an attempt to provide proof of concept of the utility of the One Health approach, the US Agency for International Development's PREDICT project consortium designed and implemented a targeted, risk-based surveillance strategy based not on humans as sentinels of disease but on detecting viruses early, at their source, where intervention strategies can be implemented before there is opportunity for spillover and spread in people or food animals. Here, we share One Health approaches used by consortium members to illustrate the potential for successful One Health outcomes that can be achieved through collaborative, transdisciplinary partnerships. PREDICT's collaboration with partners around the world on strengthening local capacity to detect hundreds of viruses in wild animals, coupled with a series of cutting-edge virological and analytical activities, have significantly improved our baseline knowledge on the zoonotic pool of viruses and the risk of exposure to people. Further testament to the success of the project's One Health approach and the work of its team of dedicated One Health professionals are the resulting 90 peer-reviewed, scientific publications in under 5 years that improve our understanding of zoonoses and the factors influencing their emergence. The findings are assisting in global health improvements, including surveillance science, diagnostic technologies, understanding of viral evolution, and ecological driver identification. Through its One Health leadership and multi-disciplinary partnerships, PREDICT has forged new networks of professionals from the human, animal, and environmental health sectors to promote global health, improving our understanding of viral disease spillover from wildlife and implementing strategies for preventing and controlling emerging disease threats.


Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes/veterinária , Saúde Global , Vigilância de Evento Sentinela/veterinária , Zoonoses/epidemiologia , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/etiologia , Humanos , Zoonoses/etiologia
11.
J Vet Diagn Invest ; 28(4): 399-407, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27240567

RESUMO

Infestation with nonnative, "exotic" lice was first noted in Washington black-tailed deer (Odocoileus hemionus columbianus) in 1994 and has since then spread throughout the western United States. In California, infestation with the exotic louse Damalinia (Cervicola) sp. was first detected in black-tailed deer from northern California in 2004, and, in 2009, the exotic louse species Bovicola tibialis and Linognathus africanus were identified on mule deer (Odocoileus hemionus californicus) in central Sierra Nevada in association with a mortality event. Exotic lice have since been detected in various locations throughout the state. We describe the geographic distribution of these exotic lice within California, using data from 520 live-captured and 9 postmortem-sampled, free-ranging mule deer examined between 2009 and 2014. Data from live-captured deer were used to assess possible associations between louse infestation and host age, host sex, migratory behavior, season, and blood selenium and serum copper concentrations. Damalinia (Cervicola) sp. and B. tibialis lice were distinctively distributed geographically, with D. (Cervicola) sp. infesting herds in northern and central coastal California, B. tibialis occurring in the central coastal mountains and the Sierra Nevada, and L. africanus occurring only sporadically. Younger age classes and low selenium concentrations were significantly associated with exotic louse infestation, whereas no significant relationship was detected with serum copper levels. Our results show that exotic lice are widespread in California, and younger age classes with low blood selenium concentrations are more likely to be infested with lice than older deer.


Assuntos
Alopecia/veterinária , Anoplura/fisiologia , Cervos , Iscnóceros/fisiologia , Infestações por Piolhos/veterinária , Fatores Etários , Alopecia/epidemiologia , Alopecia/parasitologia , Migração Animal , Animais , Análise Química do Sangue/veterinária , California/epidemiologia , Cervos/fisiologia , Feminino , Espécies Introduzidas , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Masculino , Prevalência , Estações do Ano , Fatores Sexuais
12.
J Wildl Dis ; 45(1): 109-21, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19204340

RESUMO

During 2002, 2,239 marine mammals stranded in southern California. This unusual marine mammal stranding event was clustered from April to June and consisted primarily of California sea lions (Zalophus californianus) and long-beaked common dolphins (Delphinus capensis) with severe neurologic signs. Intoxication with domoic acid (DA), a marine neurotoxin produced during seasonal blooms of Pseudo-nitzschia spp., was suspected. Definitively linking harmful algal blooms to large-scale marine mammal mortalities presents a substantial challenge, as does determining the geographic extent, species composition, and potential population impacts of marine mammal die-offs. For this reason, time series cross-correlation analysis was performed to test the temporal correlations of Pseudo-nitzschia blooms with strandings occurring along the southern California coastline. Temporal correlations were identified between strandings and blooms for California sea lions, long-beaked common dolphins, and short-beaked common dolphins (Delphinus delphis). Similar correlations were identified for bottlenose dolphins (Tursiops truncatus) and gray whales (Eschrichtius robustus), but small sample sizes for these species made associations more speculative. The timing of the blooms and strandings of marine mammals suggested that both inshore and offshore foraging species were affected and that marine biotoxin programs should include offshore monitoring sites. In addition, California sea lion-strandings appear to be a very sensitive indicator of DA in the marine environment, and their monitoring should be included in public health surveillance plans.


Assuntos
Eutrofização , Ácido Caínico/análogos & derivados , Mortalidade/tendências , Intoxicação/veterinária , Leões-Marinhos , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/veterinária , California/epidemiologia , Monitoramento Ambiental , Monitoramento Epidemiológico , Feminino , Cadeia Alimentar , Ácido Caínico/envenenamento , Masculino , Toxinas Marinhas/envenenamento , Neurotoxinas/envenenamento , Intoxicação/etiologia , Intoxicação/mortalidade , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...